Bibliography#

[1]

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007. doi:10.1103/PhysRevLett.98.146401.

[2]

Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of Chemical Physics, 134(7):074106, 2011. doi:10.1063/1.3553717.

[3]

George Marsaglia and Arif Zaman. A New Class of Random Number Generators. The Annals of Applied Probability, 1(3):462 – 480, 1991. doi:10.1214/aoap/1177005878.

[4]

Martin Lüscher. A portable high-quality random number generator for lattice field theory simulations. Computer Physics Communications, 79(1):100–110, 1994. doi:https://doi.org/10.1016/0010-4655(94)90232-1.

[5]

F. James. Ranlux: a fortran implementation of the high-quality pseudorandom number generator of lüscher. Computer Physics Communications, 79(1):111–114, 1994. doi:https://doi.org/10.1016/0010-4655(94)90233-X.

[6]

G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47:558–561, Jan 1993. doi:10.1103/PhysRevB.47.558.

[7]

G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 49:14251–14269, May 1994. doi:10.1103/PhysRevB.49.14251.

[8]

G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15 – 50, 1996. doi:10.1016/0927-0256(96)00008-0.

[9]

G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996. doi:10.1103/PhysRevB.54.11169.

[10]

Brian Kolb, Levi C. Lentz, and Alexie M. Kolpak. Discovering charge density functionals and structure-property relationships with prophet: a general framework for coupling machine learning and first-principles methods. Scientific Reports, 7(1192):2045–2322, 2017. doi:10.1038/s41598-017-01251-z.

[11]

P. Debye. Näherungsformeln für die zylinderfunktionen für große werte des arguments und unbeschränkt veränderliche werte des index. Math. Ann., 1909. doi:10.1007/BF01450097.

[12]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in Fortran 90 (2nd Ed.): The Art of Parallel Scientific Computing. Cambridge University Press, USA, 1996. ISBN 0521574390.

[13]

Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural relaxation made simple. Phys. Rev. Lett., 97:170201, Oct 2006. doi:10.1103/PhysRevLett.97.170201.

[14]

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35(151):773–782, 1980. doi:10.1090/S0025-5718-1980-0572855-7.

[15]

Michele Ceriotti, Joshua More, and David E. Manolopoulos. i-PI: A Python interface for ab initio path integral molecular dynamics simulations. Computer Physics Communications, 185(3):1019–1026, 2014. doi:10.1016/j.cpc.2013.10.027.